Revision history for TutoriumMathe3L9
Additions:
2.3.4. F(s)=2/(s^2+4) I L^(-1) (..) -> f(t)=sin(2t)
2.3.5. F(s)=s/(s^2+4) I L^(-1) (..) -> f(t)=cos(2t)
2.3.6. F(s)=s/(s^2-4)
F(s)=s/(s^2-4)
s/(s^2-4)=A/(s+2)+B/(s-2)
s/(s^2-4)=((A(s-2)+B(s+2)))/(s+2)(s-2)
Zählervergleich: s=A(s-2)+B(s+2)
s=-2->-2=-4B
s1:1=A+B
s0:0=-2A+2B
A=1/2; B=1/2
F(s)=1/2, 1/(s+2)+1/2, 1/(s-2) I L^(-1) (..)
f(t)=1/2(e^(2t)+e^(-2t)
f(t)=cosh(2t)
2.3.7. F(s)=1/(s+2)^2
F(s)=1/(s+2)^2 I L^(-1) (..) Dämpfungsregel
f(t)=te^(-2t)
2.3.5. F(s)=s/(s^2+4) I L^(-1) (..) -> f(t)=cos(2t)
2.3.6. F(s)=s/(s^2-4)
F(s)=s/(s^2-4)
s/(s^2-4)=A/(s+2)+B/(s-2)
s/(s^2-4)=((A(s-2)+B(s+2)))/(s+2)(s-2)
Zählervergleich: s=A(s-2)+B(s+2)
s=-2->-2=-4B
s1:1=A+B
s0:0=-2A+2B
A=1/2; B=1/2
F(s)=1/2, 1/(s+2)+1/2, 1/(s-2) I L^(-1) (..)
f(t)=1/2(e^(2t)+e^(-2t)
f(t)=cosh(2t)
2.3.7. F(s)=1/(s+2)^2
F(s)=1/(s+2)^2 I L^(-1) (..) Dämpfungsregel
f(t)=te^(-2t)
No Differences
Additions:
Transformieren Sie mit der Tabelle der Laplace-Korrespondenzen vom Bild- in den Zeitbereich. Falls nötig, zerlegen Sie die Ausdrücke zunächst in Partialbrüche
2.3.1. F(s)=1/(s+2) I L^(-1) (..) -> f(t)=e^(-2t)
2.3.2. F(s)=5/(s+2) I L^(-1) (..) -> f(t)=5e^(-2t)
2.3.3. F(s)=2/(s^2-4)
2/(s^2-4)=A/(s+2)+B/(s-2)
2/(s^2-4)=(A(s-2)+B(s+2))/((s+2)(s-2))
Zählervergleich: 2=A(s-2)+B(s+2)
1. Weg: Nullstellen einsetzen:
s=2->2=4B
s=-2->-4A
2. Weg: Koeffizientenvergleich:
s1:0=A+B
s0: 2=-2A+2B
A=-1/2; B=1/2
F(s)=(-1/2)1/(s+2)+(1/2)1/(s-2) I L^(-1)(..)
f(t)=1/2(e^(2t)-e^(-2t))
f(t)=sinh(2t)
2.3.1. F(s)=1/(s+2) I L^(-1) (..) -> f(t)=e^(-2t)
2.3.2. F(s)=5/(s+2) I L^(-1) (..) -> f(t)=5e^(-2t)
2.3.3. F(s)=2/(s^2-4)
2/(s^2-4)=A/(s+2)+B/(s-2)
2/(s^2-4)=(A(s-2)+B(s+2))/((s+2)(s-2))
Zählervergleich: 2=A(s-2)+B(s+2)
1. Weg: Nullstellen einsetzen:
s=2->2=4B
s=-2->-4A
2. Weg: Koeffizientenvergleich:
s1:0=A+B
s0: 2=-2A+2B
A=-1/2; B=1/2
F(s)=(-1/2)1/(s+2)+(1/2)1/(s-2) I L^(-1)(..)
f(t)=1/2(e^(2t)-e^(-2t))
f(t)=sinh(2t)
Deletions:
{{image url="Transformation6.jpg" width="550" class="left"}}
**Zählervergleich:**
2 = A(s-2) + B(s+2)
**1. Weg: Nullstellen einsetzen:**
s = 2--> 2 = 4B
s = -2-->2 = -4A
{{image url="Transformation7.jpg" width="500" class="left"}}
{{image url="Transformation8.jpg" width="550" class="left"}}
**Zählervergleich:**
s = A(s-2) + B(s+2)
**1. Weg: Nullstellen einsetzen**
s = 2 -->2 = 4B
s = -2 -->-2 = -4B
{{image url="Transformation9.jpg" width="500" class="left"}}
{{image url="Transformation10.jpg" width="200" class="left"}}
**1. Weg: Partialbruchzerlegung:**
{{image url="Transformation12.jpg" width="400" class="left"}}
**Zählervergleich:**
{{image url="Transformation13.jpg" width="250" class="left"}}
**2. Weg: Differentationsregel**
{{image url="Transformation14.jpg" width="300" class="left"}}
{{image url="Transformation15.jpg" width="350" class="left"}}
{{image url="Transformation16.jpg" width="200" class="left"}}
**1. Weg: Partialbruchzerlegung:**
{{image url="Transformation17.jpg" width="350" class="left"}}
**Zählervergleich:**
{{image url="Transformation18.jpg" width="350" class="left"}}
**2. Weg: Differentationsregel:**
{{image url="Transformation19.jpg" width="350" class="left"}}
{{image url="Transformation20.jpg" width="200" class="left"}}
**1. Weg: Partialbruchzerlegung:**
{{image url="Transformation21.jpg" width="300" class="left"}}
**Zählervergleich:**
{{image url="Transformation22.jpg" width="350" class="left"}}
**2. Weg: Differentationsregel:**
{{image url="Transformation23.jpg" width="350" class="left"}}
{{image url="Transformation24.jpg" width="350" class="left"}}
Der Nenner hat konjugiert komplexe Nullstellen. Deshalb ist quadratische Ergänzung zweckmäßiger als Partialbruchzerlegung.
{{image url="Transformation25.jpg" width="350" class="left"}}
{{image url="Transformation26.jpg" width="200" class="left"}}
Wie in 3.12 wird auch hier die quadratische Ergänzung benutzt
{{image url="Transformation27.jpg" width="500" class="left"}}
{{image url="Transformation28.jpg" width="200" class="left"}}
Wie in 3.12 wird auch hier die quadratische Ergänzung benutzt
{{image url="Transformation29.jpg" width="450" class="left"}}
-------------
**Aufgabe 2.4**
Führen Sie die Partialbruchzerlegung durch und transformieren Sie danach in den Zeitbereich.
{{image url="Transformation30.jpg" width="300" class="left"}}
**Zählervergleich:**
1 = A (s+1) + Bs
{{image url="Transformation31.jpg" width="350" class="left"}}
{{image url="Transformation32.jpg" width="400" class="left"}}
{{image url="Transformation33.jpg" width="500" class="left"}}
**Nullstellen einsetzen:**
s = -1 --> -1 = A
s = -2 --> -2 = -C
**Koeffizienten - Vergleich:**
{{image url="Transformation34.jpg" width="300" class="left"}}
{{image url="Transformation35.jpg" width="400" class="left"}}
**Zählervergleich:**
s = A(s²+2) + (Bs+C)(s+1)
**Nullstellen einsetzen:**
s = -1 --> -1 = 3A
{{image url="Transformation36.jpg" width="400" class="left"}}
{{image url="Transformation37.jpg" width="500" class="left"}}
**Nullstellen einsetzen:**
s = 1--> 5 = 34A
**Koeffizienten - Vergleich:**
{{image url="Transformation38.jpg" width="500" class="left"}}
------------------------------------------------
**Aufgabe 2.5**
Lösen Sie folgende Anfangswertaufgaben mit der Laplace-Transformation.
{{image url="Transformation39.jpg" width="550" class="left"}}
**Nullstellen einsetzen:**
{{image url="Transformation40.jpg" width="250" class="left"}}
{{image url="Transformation41.jpg" width="500" class="left"}}
{{image url="Transformation42.jpg" width="600" class="left"}}
**Zählervergleich: **
3 = A(s+1)(s-5) + B(s-2)(s-5)+C(s-2)(s+1)
**Nullstellen einsetzen:**
{{image url="Transformation43.jpg" width="350" class="left"}}
{{image url="Transformation44.jpg" width="600" class="left"}}
**Nullstellen einsetzen:**
s = 5 --> 3 = 204D
s = -1 --> 3 = -60C
**Koeffizienten - Vergleich:**
{{image url="Transformation45.jpg" width="500" class="left"}}
{{image url="Transformation46.jpg" width="600" class="left"}}
**Nullstellen einsetzen:**
s = 5 --> 5 = 246D
s = -1 --> -1 = -102C
**Koeffizienten - Vergleich:**
{{image url="Transformation47.jpg" width="600" class="left"}}
{{image url="Transformation48.jpg" width="600" class="left"}}
**Zählervergleich:**
7 = As(s-5)+Bs(s+1)+C(s+1)(s-5)
**Nullstellen einsetzen:**
{{image url="Transformation49.jpg" width="350" class="left"}}
{{image url="Transformation50.jpg" width="700" class="left"}}
**Nullstellen einsetzen:**
s = 5 --> 2 = 750B
s = -1 --> 2 = 6A
s = 0 --> 2 = -5E
**Koeffizienten - Vergleich:**
{{image url="Transformation51.jpg" width="500" class="left"}}
{{image url="Transformation52.jpg" width="650" class="left"}}
**Koeffizienten - Vergleich:**
{{image url="Transformation53.jpg" width="650" class="left"}}
{{image url="Transformation54.jpg" width="650" class="left"}}
**Nullstellen einsetzen:**
s = -3 --> 32 = -18B
s = -1 --> 4 = 2A
s = 0 --> 2 = 3D
**Achtung !!!**
Die zweite Anfangsbedingung y(0) = 0 wird nicht erfüllt. Überzeugen Sie sich davon, indem Sie die erste Ableitung von y bilden und t = 0 einsetzen.
Für die spezielle Lösung einer DGL 1. Ordnung ist i.a. nur eine Zusatzbedingung notwendig. Weitere Bedingungen könnten dann nur rein zufällig auch erfüllt sein, was aber hier nicht zutrifft.
{{image url="Transformation56.jpg" width="450" class="left"}}
{{image url="Transformation57.jpg" width="550" class="left"}}
Achtung !!! Wie in 2.5.9 ist die Anfangsbedingung y(0) = 0 nicht erfüllt !
{{image url="Transformation58.jpg" width="750" class="left"}}
**Zählervergleich:**
{{image url="Transformation59.jpg" width="750" class="left"}}
----------------------------------------------------------------
**Aufgabe 2.6**
Transformieren Sie in den Zeitbereich unter Verwendung der Faltungsregel!
{{image url="Transformation60.jpg" width="750" class="left"}}
{{image url="Transformation61.jpg" width="750" class="left"}}
Additions:
=lim(((-A/s)e^(-st)+(-A/(s+1)e^(-t(s+1)+3))von 3 bis b
=lim((-A/s)e^(-3s)+(A/s)e^0-A/(s+1)e^(-b(s+1)+3)+A/(s+1)e^(-3(s+1)+3))
=lim((-A/s)e^(-3s)+A/s-A/(s+1)e^(-b(s+1)+3)+A/(s+1)e^(-3s)
=(-A/s)e^(-3s)+A/s+A/(s+1)e^(-3s)
=lim((-A/s)e^(-3s)+(A/s)e^0-A/(s+1)e^(-b(s+1)+3)+A/(s+1)e^(-3(s+1)+3))
=lim((-A/s)e^(-3s)+A/s-A/(s+1)e^(-b(s+1)+3)+A/(s+1)e^(-3s)
=(-A/s)e^(-3s)+A/s+A/(s+1)e^(-3s)
Deletions:
Additions:
F(s)=∫f(t)e^(-stdt wobei ∫ von 0 bis ∞
=lim∫(von 0 bis 2π)2e^(-st)dt+∫(von 2π bis b)2cos(3t)e^(-st)dt
=lim(((-2/s)e^(-st))(von 0 bis 2π)+(2/(s^2+9)e^(-st)(3sin(3t)-scos(3t)))von 2π bis b)
=(-2/s)e^(-2πs)-(2/s)e^0+lim(von b bis ∞)(2/(s^2+9)(3sin(3b)e^(-sb)-scos(3b)e^(-sb)-3sin(3*2π)e^(-2πs)-scos(3*2π)e^(-2πs))
=(-2/s)e^(-2πs)-2/s-(2se^(-2πs))/(s^2+9)
F(s)=∫f(t)e^(-st)dt wobei ∫ von 0 bis ∞
=lim∫Adt+∫Ae^(-t+3)e^(-st)dt=lim∫Adt+∫Ae^(-t(s+1)+1)dt
=lim(((-A/s)e^(-st)+(-A/(s+1)e^^
=lim∫(von 0 bis 2π)2e^(-st)dt+∫(von 2π bis b)2cos(3t)e^(-st)dt
=lim(((-2/s)e^(-st))(von 0 bis 2π)+(2/(s^2+9)e^(-st)(3sin(3t)-scos(3t)))von 2π bis b)
=(-2/s)e^(-2πs)-(2/s)e^0+lim(von b bis ∞)(2/(s^2+9)(3sin(3b)e^(-sb)-scos(3b)e^(-sb)-3sin(3*2π)e^(-2πs)-scos(3*2π)e^(-2πs))
=(-2/s)e^(-2πs)-2/s-(2se^(-2πs))/(s^2+9)
F(s)=∫f(t)e^(-st)dt wobei ∫ von 0 bis ∞
=lim∫Adt+∫Ae^(-t+3)e^(-st)dt=lim∫Adt+∫Ae^(-t(s+1)+1)dt
=lim(((-A/s)e^(-st)+(-A/(s+1)e^^
Additions:
**2.1.1.**
f(t)=4e^(-3t)
->F(s)=4/(s+3)
->F(s)=1/s+2/s^2+2/s^3
->F(s)=1/(s+2)+2/(s+2)^2+2/(s+2)^3
->F(s)=1/(s-1)+1/(s+1)
->F(s)=2s/(s^2-1)
(=sinh(t))
->F(s)=1/2((1/(s-1)-1/(s+1))
->F(s)=1/2((2/(s^2-1))
->F(s)=1/(s^2-1)
->F(s)=2/(s^2+4)+3s/(s^2+4)=(2+3s)/(s^2+4)
->F(s)=(2/(s+4^2+4))+(3(s+4)/((s+4)^2+4))=(3s+14)/(s^2+8s+20)
f(t)=4e^(-3t)
->F(s)=4/(s+3)
->F(s)=1/s+2/s^2+2/s^3
->F(s)=1/(s+2)+2/(s+2)^2+2/(s+2)^3
->F(s)=1/(s-1)+1/(s+1)
->F(s)=2s/(s^2-1)
(=sinh(t))
->F(s)=1/2((1/(s-1)-1/(s+1))
->F(s)=1/2((2/(s^2-1))
->F(s)=1/(s^2-1)
->F(s)=2/(s^2+4)+3s/(s^2+4)=(2+3s)/(s^2+4)
->F(s)=(2/(s+4^2+4))+(3(s+4)/((s+4)^2+4))=(3s+14)/(s^2+8s+20)
Deletions:
Additions:
2.1.1. f(t)=4e^(-3t)
2.1.2. f(t)=1+2t+t^2
2.1.3. f(t)=(1+2t+t^2)e^(-2t)
2.1.4. f(t)=e^t+e^(-t)
2.1.5. f(t)=1/2(e^t-e^(-t))
2.1.6. f(t)=sin(2t)+3cos(2t)
2.1.7. f(t)=e^(-4t)[sin(2t)+3cos(2t)]
2.2.1. f(t)=
(0; t<0)
(2; 0<t<2π)
(2cos(3t), 2π<t)
2.2.2. f(t)=
(0, t<0)
(A, 0<t<3)
(Ae^(-t-3), 3<t)
2.1.2. f(t)=1+2t+t^2
2.1.3. f(t)=(1+2t+t^2)e^(-2t)
2.1.4. f(t)=e^t+e^(-t)
2.1.5. f(t)=1/2(e^t-e^(-t))
2.1.6. f(t)=sin(2t)+3cos(2t)
2.1.7. f(t)=e^(-4t)[sin(2t)+3cos(2t)]
2.2.1. f(t)=
(0; t<0)
(2; 0<t<2π)
(2cos(3t), 2π<t)
2.2.2. f(t)=
(0, t<0)
(A, 0<t<3)
(Ae^(-t-3), 3<t)
Additions:
{{image url="Transformation61.jpg" width="750" class="left"}}
Deletions:
Additions:
{{image url="Transformation60.jpg" width="750" class="left"}}
Additions:
----------------------------------------------------------------
**Aufgabe 2.6**
Transformieren Sie in den Zeitbereich unter Verwendung der Faltungsregel!
**Aufgabe 2.6**
Transformieren Sie in den Zeitbereich unter Verwendung der Faltungsregel!
No Differences
Additions:
{{image url="Transformation59.jpg" width="750" class="left"}}
Additions:
{{image url="Transformation58.jpg" width="750" class="left"}}
Additions:
Achtung !!! Wie in 2.5.9 ist die Anfangsbedingung y(0) = 0 nicht erfüllt !
Additions:
{{image url="Transformation57.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation56.jpg" width="450" class="left"}}
Deletions:
Additions:
{{image url="Transformation55.jpg" width="650" class="left"}}
Additions:
**Achtung !!!**
Die zweite Anfangsbedingung y(0) = 0 wird nicht erfüllt. Überzeugen Sie sich davon, indem Sie die erste Ableitung von y bilden und t = 0 einsetzen.
Für die spezielle Lösung einer DGL 1. Ordnung ist i.a. nur eine Zusatzbedingung notwendig. Weitere Bedingungen könnten dann nur rein zufällig auch erfüllt sein, was aber hier nicht zutrifft.
Die zweite Anfangsbedingung y(0) = 0 wird nicht erfüllt. Überzeugen Sie sich davon, indem Sie die erste Ableitung von y bilden und t = 0 einsetzen.
Für die spezielle Lösung einer DGL 1. Ordnung ist i.a. nur eine Zusatzbedingung notwendig. Weitere Bedingungen könnten dann nur rein zufällig auch erfüllt sein, was aber hier nicht zutrifft.
Additions:
s = -3 --> 32 = -18B
s = -1 --> 4 = 2A
s = 0 --> 2 = 3D
s = -1 --> 4 = 2A
s = 0 --> 2 = 3D
Additions:
{{image url="Transformation54.jpg" width="650" class="left"}}
Additions:
{{image url="Transformation53.jpg" width="650" class="left"}}
Additions:
{{image url="Transformation52.jpg" width="650" class="left"}}
Deletions:
Additions:
{{image url="Transformation52.jpg" width="500" class="left"}}
Additions:
{{image url="Transformation51.jpg" width="500" class="left"}}
Deletions:
Additions:
{{image url="Transformation51.jpg" width="400" class="left"}}
Additions:
s = 5 --> 2 = 750B
s = -1 --> 2 = 6A
s = 0 --> 2 = -5E
s = -1 --> 2 = 6A
s = 0 --> 2 = -5E
Additions:
{{image url="Transformation50.jpg" width="700" class="left"}}
Deletions:
Additions:
{{image url="Transformation50.jpg" width="350" class="left"}}
Additions:
{{image url="Transformation49.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation49.jpg" width="600" class="left"}}
Additions:
7 = As(s-5)+Bs(s+1)+C(s+1)(s-5)
Additions:
{{image url="Transformation48.jpg" width="600" class="left"}}
Additions:
{{image url="Transformation47.jpg" width="600" class="left"}}
Additions:
s = 5 --> 5 = 246D
s = -1 --> -1 = -102C
s = -1 --> -1 = -102C
Additions:
{{image url="Transformation45.jpg" width="500" class="left"}}
{{image url="Transformation46.jpg" width="600" class="left"}}
{{image url="Transformation46.jpg" width="600" class="left"}}
Deletions:
Additions:
{{image url="Transformation45.jpg" width="450" class="left"}}
Deletions:
Additions:
{{image url="Transformation45.jpg" width="600" class="left"}}
Additions:
s = 5 --> 3 = 204D
s = -1 --> 3 = -60C
s = -1 --> 3 = -60C
Additions:
{{image url="Transformation44.jpg" width="600" class="left"}}
Additions:
{{image url="Transformation43.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation43.jpg" width="600" class="left"}}
Additions:
**Zählervergleich: **
3 = A(s+1)(s-5) + B(s-2)(s-5)+C(s-2)(s+1)
3 = A(s+1)(s-5) + B(s-2)(s-5)+C(s-2)(s+1)
Additions:
{{image url="Transformation42.jpg" width="600" class="left"}}
Additions:
{{image url="Transformation41.jpg" width="500" class="left"}}
Additions:
{{image url="Transformation40.jpg" width="250" class="left"}}
Deletions:
Additions:
{{image url="Transformation40.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation39.jpg" width="550" class="left"}}
Additions:
------------------------------------------------
**Aufgabe 2.5**
Lösen Sie folgende Anfangswertaufgaben mit der Laplace-Transformation.
**Aufgabe 2.5**
Lösen Sie folgende Anfangswertaufgaben mit der Laplace-Transformation.
Additions:
{{image url="Transformation38.jpg" width="500" class="left"}}
Additions:
s = 1--> 5 = 34A
Additions:
{{image url="Transformation37.jpg" width="500" class="left"}}
Additions:
{{image url="Transformation36.jpg" width="400" class="left"}}
Deletions:
Additions:
{{image url="Transformation36.jpg" width="450" class="left"}}
Deletions:
Additions:
{{image url="Tranformation36.jpg" width="450" class="left"}}
No Differences
Additions:
s = A(s²+2) + (Bs+C)(s+1)
s = -1 --> -1 = 3A
s = -1 --> -1 = 3A
Additions:
{{image url="Transformation35.jpg" width="400" class="left"}}
Deletions:
Additions:
{{image url="Transformation35.jpg" width="300" class="left"}}
Additions:
{{image url="Transformation34.jpg" width="300" class="left"}}
Deletions:
Additions:
**Nullstellen einsetzen:**
s = -1 --> -1 = A
s = -2 --> -2 = -C
**Koeffizienten - Vergleich:**
{{image url="Transformation34.jpg" width="500" class="left"}}
s = -1 --> -1 = A
s = -2 --> -2 = -C
**Koeffizienten - Vergleich:**
{{image url="Transformation34.jpg" width="500" class="left"}}
Additions:
{{image url="Transformation33.jpg" width="500" class="left"}}
Additions:
{{image url="Transformation32.jpg" width="400" class="left"}}
Additions:
{{image url="Transformation31.jpg" width="350" class="left"}}
Deletions:
{{image url="Transformation31.jpg" width="300" class="left"}}
Additions:
**Nullstellen einsetzen:**
{{image url="Transformation31.jpg" width="300" class="left"}}
{{image url="Transformation31.jpg" width="300" class="left"}}
Additions:
1 = A (s+1) + Bs
Additions:
{{image url="Transformation30.jpg" width="300" class="left"}}
Deletions:
Additions:
**Aufgabe 2.4**
{{image url="Transformation30.jpg" width="450" class="left"}}
{{image url="Transformation30.jpg" width="450" class="left"}}
Deletions:
Additions:
---------------------
-------------------
-------------
**Aufgabe 2.4:**
Führen Sie die Partialbruchzerlegung durch und transformieren Sie danach in den Zeitbereich.
-------------------
-------------
**Aufgabe 2.4:**
Führen Sie die Partialbruchzerlegung durch und transformieren Sie danach in den Zeitbereich.
Additions:
{{image url="Transformation29.jpg" width="450" class="left"}}
Deletions:
Additions:
{{image url="Transformation29.jpg" width="300" class="left"}}
No Differences
Additions:
{{image url="Transformation28.jpg" width="200" class="left"}}
Additions:
{{image url="Transformation27.jpg" width="500" class="left"}}
Deletions:
Additions:
Wie in 3.12 wird auch hier die quadratische Ergänzung benutzt
{{image url="Transformation27.jpg" width="200" class="left"}}
{{image url="Transformation27.jpg" width="200" class="left"}}
No Differences
Additions:
{{image url="Transformation26.jpg" width="200" class="left"}}
Deletions:
Additions:
{{image url="Transformation26.jpg" width="350" class="left"}}
Additions:
Der Nenner hat konjugiert komplexe Nullstellen. Deshalb ist quadratische Ergänzung zweckmäßiger als Partialbruchzerlegung.
{{image url="Transformation25.jpg" width="350" class="left"}}
{{image url="Transformation25.jpg" width="350" class="left"}}
Deletions:
Additions:
Der Nenner hat konjugiert komplexe Nullstellen. Deshalb ist quadratische Ergänzung zweckmäßiger als Partialbruchzerlegung
Additions:
{{image url="Transformation24.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation24jpg" width="350" class="left"}}
No Differences
Additions:
{{image url="Transformation23.jpg" width="350" class="left"}}
Additions:
{{image url="Transformation22.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation22.jpg" width="300" class="left"}}
Additions:
{{image url="Transformation21.jpg" width="300" class="left"}}
Deletions:
Additions:
{{image url="Transformation21.jpg" width="200" class="left"}}
No Differences
Additions:
{{image url="Transformation20.jpg" width="200" class="left"}}
No Differences
Additions:
**2. Weg: Differentationsregel:**
{{image url="Transformation19.jpg" width="350" class="left"}}
{{image url="Transformation19.jpg" width="350" class="left"}}
Additions:
{{image url="Transformation18.jpg" width="350" class="left"}}
Additions:
{{image url="Transformation17.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation17.jpg" width="200" class="left"}}
Additions:
{{image url="Transformation16.jpg" width="200" class="left"}}
Additions:
{{image url="Transformation15.jpg" width="350" class="left"}}
Deletions:
Additions:
{{image url="Transformation15.jpg" width="400" class="left"}}
Additions:
{{image url="Transformation14.jpg" width="300" class="left"}}
Deletions:
Additions:
**2. Weg: Differentationsregel**
{{image url="Transformation14.jpg" width="250" class="left"}}
{{image url="Transformation14.jpg" width="250" class="left"}}
Additions:
{{image url="Transformation13.jpg" width="250" class="left"}}
Deletions:
Additions:
{{image url="Transformation13.jpg" width="400" class="left"}}
Additions:
{{image url="Transformation12.jpg" width="400" class="left"}}
Deletions:
Additions:
{{image url="Transformation11.jpg" width="200" class="left"}}
Additions:
**1. Weg: Partialbruchzerlegung:**
Additions:
{{image url="Transformation10.jpg" width="200" class="left"}}
No Differences
Additions:
{{image url="Transformation9.jpg" width="500" class="left"}}
Deletions:
Additions:
s = A(s-2) + B(s+2)
**1. Weg: Nullstellen einsetzen**
s = 2 -->2 = 4B
s = -2 -->-2 = -4B
{{image url="Transformation9.jpg" width="550" class="left"}}
**1. Weg: Nullstellen einsetzen**
s = 2 -->2 = 4B
s = -2 -->-2 = -4B
{{image url="Transformation9.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation8.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation7.jpg" width="500" class="left"}}
Deletions:
Additions:
{{image url="Transformation7.jpg" width="550" class="left"}}
Additions:
**1. Weg: Nullstellen einsetzen:**
s = 2--> 2 = 4B
s = -2-->2 = -4A
s = 2--> 2 = 4B
s = -2-->2 = -4A
Additions:
**Zählervergleich:**
2 = A(s-2) + B(s+2)
2 = A(s-2) + B(s+2)
No Differences
Additions:
**Aufgabe 2.3**
Transformieren Sie mit der Tabelle der Laplace-Korrespondenzen vom Bild- in den Zeitbereich. Falls nötig, zerlegen Sie die Ausdrücke zunächst in Partialbrüche.
{{image url="Transformation6.jpg" width="550" class="left"}}
Transformieren Sie mit der Tabelle der Laplace-Korrespondenzen vom Bild- in den Zeitbereich. Falls nötig, zerlegen Sie die Ausdrücke zunächst in Partialbrüche.
{{image url="Transformation6.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation5.jpg" width="550" class="left"}}
Additions:
{{image url="Transformation4.jpg" width="650" class="left"}}
Deletions:
Additions:
{{image url="Tranformation4.jpg" width="450" class="left"}}
Additions:
{{image url="Transformation3.jpg" width="350" class="left"}}
Deletions:
Additions:
**Aufgabe 2.2**
Berechnen Sie die Bildfunktion unter Verwendung des Integrals, welches die Laplace-Transformation definiert.
{{image url="Transformation3.jpg" width="400" class="left"}}
Berechnen Sie die Bildfunktion unter Verwendung des Integrals, welches die Laplace-Transformation definiert.
{{image url="Transformation3.jpg" width="400" class="left"}}
Additions:
{{image url="Tranformation1.jpg" width="450" class="left"}}
{{image url="Transformation2.jpg" width="400" class="left"}}
{{image url="Transformation2.jpg" width="400" class="left"}}
Deletions:
{{image url="Transformation2.jpg" width="400" class="center"}}
Additions:
{{image url="Transformation2.jpg" width="400" class="center"}}
Additions:
{{image url="Tranformation1.jpg" width="450" class="center"}}
Deletions:
Additions:
{{image url="Tranformation1.jpg" width="400" class="center"}}
Deletions:
Additions:
{{image url="Tranformation1.jpg" width="550" class="center"}}
Deletions:
Additions:
{{files}}
Additions:
||**Aufgabe 2.1**
Nachfolgend für t ≥ 0 definierte Funktionen haben für t < 0 den Funktionswert f(t) = 0. Transformieren Sie mit der Tabelle
in den Bildbereich der Laplace-Transformation!
{{image url="Transformation1.jpg" width="550" class="center"}}
||
Nachfolgend für t ≥ 0 definierte Funktionen haben für t < 0 den Funktionswert f(t) = 0. Transformieren Sie mit der Tabelle
in den Bildbereich der Laplace-Transformation!
{{image url="Transformation1.jpg" width="550" class="center"}}
||
Deletions:
Additions:
|| ||
Deletions:
{{image url="Mathe3L102.jpg" width="600" class="center"}}
{{image url="Mathe3L103.jpg" width="600" class="center"}}
{{image url="Mathe3L104.jpg" width="600" class="center"}}
{{image url="Mathe3L105.jpg" width="600" class="center"}}
{{image url="Mathe3L106.jpg" width="600" class="center"}}
{{image url="Math3L107.jpg" width="600" class="center"}}
{{image url="Mathe3L108.jpg" width="600" class="center"}}
{{image url="Mathe3L109.jpg" width="600" class="center"}}
{{image url="Mathe3L1010.jpg" width="600" class="center"}}
{{image url="Mathe3L1011.jpg" width="600" class="center"}}
{{image url="Math3L1012.jpg" width="600" class="center"}}
{{image url="Mathe3L1013.jpg" width="600" class="center"}}
{{image url="Mathe3L1014.jpg" width="600" class="center"}}
{{image url="Mathe3L1015.jpg" width="600" class="center"}}
{{image url="Mathe3L1016.jpg" width="600" class="center"}}
{{image url="Mathe3L1017.jpg" width="600" class="center"}}
{{image url="Mathe3L1018.jpg" width="600" class="center"}}
{{image url="Mathe3L1019.jpg" width="600" class="center"}}
{{image url="Mathe3L1020.jpg" width="600" class="center"}}
{{image url="Mathe3L1021.jpg" width="600" class="center"}}
{{image url="Mathe3L1022.jpg" width="600" class="center"}}
{{image url="Mathe3L1023.jpg" width="600" class="center"}}
{{image url="Mathe3L1024.jpg" width="600" class="center"}}
{{image url="Mathe3L1025.jpg" width="600" class="center"}}
Additions:
{{image url="Mathe3L102.jpg" width="600" class="center"}}
{{image url="Mathe3L103.jpg" width="600" class="center"}}
{{image url="Mathe3L104.jpg" width="600" class="center"}}
{{image url="Mathe3L105.jpg" width="600" class="center"}}
{{image url="Mathe3L106.jpg" width="600" class="center"}}
{{image url="Math3L107.jpg" width="600" class="center"}}
{{image url="Mathe3L108.jpg" width="600" class="center"}}
{{image url="Mathe3L109.jpg" width="600" class="center"}}
{{image url="Mathe3L1010.jpg" width="600" class="center"}}
{{image url="Mathe3L1011.jpg" width="600" class="center"}}
{{image url="Math3L1012.jpg" width="600" class="center"}}
{{image url="Mathe3L1013.jpg" width="600" class="center"}}
{{image url="Mathe3L1014.jpg" width="600" class="center"}}
{{image url="Mathe3L1015.jpg" width="600" class="center"}}
{{image url="Mathe3L1016.jpg" width="600" class="center"}}
{{image url="Mathe3L1017.jpg" width="600" class="center"}}
{{image url="Mathe3L1018.jpg" width="600" class="center"}}
{{image url="Mathe3L1019.jpg" width="600" class="center"}}
{{image url="Mathe3L1020.jpg" width="600" class="center"}}
{{image url="Mathe3L1021.jpg" width="600" class="center"}}
{{image url="Mathe3L1022.jpg" width="600" class="center"}}
{{image url="Mathe3L1023.jpg" width="600" class="center"}}
{{image url="Mathe3L1024.jpg" width="600" class="center"}}
{{image url="Mathe3L1025.jpg" width="600" class="center"}}
||**{{files download="Mathe3L10.pdf"text="PDF Dokument Lösungen Laplace - Transformation"}}**||
{{image url="Mathe3L103.jpg" width="600" class="center"}}
{{image url="Mathe3L104.jpg" width="600" class="center"}}
{{image url="Mathe3L105.jpg" width="600" class="center"}}
{{image url="Mathe3L106.jpg" width="600" class="center"}}
{{image url="Math3L107.jpg" width="600" class="center"}}
{{image url="Mathe3L108.jpg" width="600" class="center"}}
{{image url="Mathe3L109.jpg" width="600" class="center"}}
{{image url="Mathe3L1010.jpg" width="600" class="center"}}
{{image url="Mathe3L1011.jpg" width="600" class="center"}}
{{image url="Math3L1012.jpg" width="600" class="center"}}
{{image url="Mathe3L1013.jpg" width="600" class="center"}}
{{image url="Mathe3L1014.jpg" width="600" class="center"}}
{{image url="Mathe3L1015.jpg" width="600" class="center"}}
{{image url="Mathe3L1016.jpg" width="600" class="center"}}
{{image url="Mathe3L1017.jpg" width="600" class="center"}}
{{image url="Mathe3L1018.jpg" width="600" class="center"}}
{{image url="Mathe3L1019.jpg" width="600" class="center"}}
{{image url="Mathe3L1020.jpg" width="600" class="center"}}
{{image url="Mathe3L1021.jpg" width="600" class="center"}}
{{image url="Mathe3L1022.jpg" width="600" class="center"}}
{{image url="Mathe3L1023.jpg" width="600" class="center"}}
{{image url="Mathe3L1024.jpg" width="600" class="center"}}
{{image url="Mathe3L1025.jpg" width="600" class="center"}}
||**{{files download="Mathe3L10.pdf"text="PDF Dokument Lösungen Laplace - Transformation"}}**||
Deletions:
||**{{files download="Mathe3L10.pdf"text="PDF Dokument Aufgaben Integralrechnung"}}**||
Additions:
{{files}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
||**{{files download="Mathe3L10.pdf"text="PDF Dokument Aufgaben Integralrechnung"}}**||
**>>[[Mathe3Tutorien Zurück zur Auswahl]]>>**
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
{{image url="Mathe3L101.jpg" width="600" class="center"}}
||**{{files download="Mathe3L10.pdf"text="PDF Dokument Aufgaben Integralrechnung"}}**||
**>>[[Mathe3Tutorien Zurück zur Auswahl]]>>**