Wissensdatenbank Wirtschaftsrecht

aktuelles Dokument: KomplexeUebungen
image4
image3
image2
image1
 Alle Kategorien:
  Forschungsdatenbank
  Lehrveranstaltungen
  Lexikon
  Literatur
  Rechtsgebiete
  Rechtsprechung
  Service
  Studium F H S
  Wissensmanagement
ich war hier: KomplexeUebungen

Revision history for KomplexeUebungen


Revision [66987]

Last edited on 2016-04-14 10:00:47 by Jorina Lossau
Deletions:
{{files}}


Revision [66986]

Edited on 2016-04-14 09:45:43 by Jorina Lossau
Additions:
||**Lösungen zu 2 und 3**
Aufgaben Teil 2:
1)
a = 1,5 ; b = 3
2)
a) x Element von R
b) +- 3
c) lim x mit +- unendlich y = -1
d) E (0;3) Maximum
3) arithmetische Zahlenfolge
n = 13
4)
a) x = -0,84
b) x = 4
**Aufgaben Teil 3:**
1)
a) R/{-1, 0}
b) keine
c) lim x mit +- unendlich y = 0
d) E (-0,5; -4) Max
2)
a= 20m ; b = 40m
3) L1=(4/3;3/2); L2=(3/2;2); LGes=(4/3;2)
4)
a) x1=0; x2=-8
b) x=625
||**{{files download="Uebungen2.pdf"text="PDF Dokument Komplexe Übungen Teil 2"}}**||
||**{{files download="Uebungen3.pdf"text="PDF Dokument Komplexe Übungen Teil 3"}}**||
||**{{files download="Uebungen4.pdf"text="PDF Dokument Komplexe Übungen Lösungen"}}**||


Revision [66985]

Edited on 2016-04-14 09:33:15 by Jorina Lossau
Additions:
||**Teil 3**
Gegeben ist folgende Funktion :
y = f(x) = 1/(x^2+x)
Bestimmen Sie für folgende x Element von R
a) Definitionsbereich
b) Nullstellen
Vor einem Kindergarten soll ein rechteckiger Spielplatz angelegt werden. Dazu ist die Fläche an drei Seiten mit einem Zaun zu umgeben, an der vierten Seite wird sie durch einen Teil des Kindergartengebäudes vollständig begrenzt. Zum Einzäunen stehen insgesamt 80 m Zaun zur Verfügung.
Bestimmen Sie unter Anwendung der Lagrange-Funktion, wie die Maße des Platzes zu wählen sind, damit die Spielplatzfläche möglichst groß wird?
Bestimmen Sie die Lösungsmenge x der folgenden Ungleichung:
I12-8xI+4<4x
Bestimmen Sie die Lösungen x der folgenden Gleichungen:
a) 1+8/(x-4)-16/(x^2-16)
b) 2lg(5x^2)-8lg(5x)=2lg(5)


Revision [66984]

Edited on 2016-04-14 09:26:42 by Jorina Lossau
Additions:
||**Teil 1**
**Aufgabe 1** (Punkte: 10)
||**Teil 2**
**Aufgabe 1** (Gesamtpunktzahl: 16)
Ein Unternehmen erhält den Auftrag, allseitig geschlossene quaderförmige Behälter, deren Länge doppelt so groß wie die Breite ist und deren Volumen jeweils 9 betragen soll, herzustellen.
Ermitteln Sie unter Anwendung der Lagrange-Funktion, wie die Maße der Behälter gewählt werden müssen, damit für deren Herstellung möglichst wenig Material verbraucht wird?
**Aufgabe 2** (Gesamtpunktzahl: 14)
Bestimmen Sie für die Funktion
y = f(x) = (9-x^2)/(x^2+3)
c) Verhalten im Unendlichen
d) Extrempunkte und Art des Extrema
Hinweis: Für die Aufgabenstellung d) sind die Ableitungen ausführlich anzugeben.
**Aufgabe 3** (Gesamtpunktzahl: 8)
In einer Versuchsreihe soll die Schutzwirkung eines Bleches in Abhängigkeit von seiner Dicke geprüft werden. Die Versuchsreihe beginnt mit einer Blechstärke von 0,3 cm und soll mit einer Verringerung von 0,0125 cm pro Versuch fortgeführt werden.
Ermitteln Sie, in welchem Versuch die Blechstärke von 0, 15 cm getestet wird.
**Aufgabe 4** (Gesamtpunktzahl: 12)
a) 3^(x+2)*4^x=2^(x+1)
b) √(x+5)+√(2x-4)=5
Deletions:
||**Aufgabe 1** (Punkte: 10)


Revision [66983]

Edited on 2016-04-14 08:43:29 by Jorina Lossau
Additions:
====Tutorium Mathematische Grundlagen und Analysis====

===Komplexe Übungen===

||**Aufgabe 1** (Punkte: 10)

Im Automobilwerk sollen pro Woche 2.000 PKW montiert werden. Bei x Standardmodellen und y Sondermodellen werden die folgenden Arbeitsstunden benötigt:

A(x,y) = 3x^2-2xy-10y+1.000.000

Ermitteln Sie unter Abwendung der Lagrange-Funktion, wie viele Standardmodelle und Sondermodelle herzustellen sind, um die insgesamt 2.000 PKW mit möglichst wenig Arbeitsstunden zu produzieren.
Hinweis: Auf den Nachweis des Extremwertes wird verzichtet.


**Aufgabe 2** (Punkte: 14)

Bestimmen Sie für folgende Funktion y = f(x)= (3x^2-1)/(x^2+4)

a) den Definitionsbereich
b) die Nullstellen
c) Extrempunkte und Art des Extrema (ausführliche Ableitungen).


**Aufgabe 3** (Punkte: 8)
Bestimmen Sie die Lösungsmenge für x der folgenden Ungleichung:
I6-4xI+2<2x


**Aufgabe 4** (Punkte: 12)

Bestimmen Sie die Lösungen x der folgenden Gleichungen:

a) √(2x+15)-√(x+4)=2
b) x^7*x^(3x-6)=x*x^(2x+2)*x^(4x-8)
||


||**{{files download="Uebungen1.pdf"text="PDF Dokument Komplexe Übungen Teil 1"}}**||

**>>[[http://wiki.fh-sm.de/AnalysisTutorienSS2013 Zurück zur Auswahl]]>>**


Revision [36062]

The oldest known version of this page was created on 2014-01-19 14:29:46 by Karina Kuehm
Valid XHTML   |   Valid CSS:   |   Powered by WikkaWiki