1. Schwerpunkt: Umformen und Vereinfachen von mathematischen Termen Berechnen Sie ohne Taschenrechner (erst möglichst viel kürzen, Primfaktorzerlegung!)
0.1.1.T

$$
\begin{aligned}
& A=\frac{5^{3} \cdot 6^{-4} \cdot 10^{-3} \cdot 9}{12^{3} \cdot 8} \cdot\left(\frac{1}{6}\right)^{-2} \cdot 2^{11}:\left(\frac{2}{3}\right) \\
& A=\frac{5^{3} \cdot(2 \cdot 3)^{-4} \cdot(2 \cdot 5)^{-3} \cdot 3^{2}}{\left(2^{2} \cdot 3\right)^{3} \cdot 2^{3}} \cdot(2 \cdot 3)^{2} \cdot 2^{11} \cdot\left(\frac{3}{2}\right) \\
& A=\frac{5^{3} \cdot 3^{2} \cdot 2^{2} \cdot 3^{2} \cdot 2^{11} \cdot 3}{2^{4} \cdot 3^{4} \cdot 2^{3} \cdot 5^{3} \cdot 2^{6} \cdot 3^{3} \cdot 2^{3} \cdot 2} \\
& A=\frac{1}{2^{4} \cdot 3^{2}}=\frac{1}{(4 \cdot 3)^{2}}=\frac{1}{\underline{\frac{144}{2}}}
\end{aligned}
$$

0.1.2.T

$$
\begin{aligned}
& \mathrm{B}=\frac{\not \chi^{\not 2} \cdot 0,12 \mu \mathrm{~V} \cdot 30 \not \mu \mathrm{AA} \cdot(20 \mathrm{~cm})^{3}}{4,0 \cdot 10^{-4} \not \mu \mathrm{WW} \cdot \frac{\not x}{4}(2,0 \mathrm{~cm})^{2} \cdot \frac{\not \partial}{4}(2,5 \mathrm{~cm})^{2}} \\
& B=\frac{0,12 \cdot 30 \cdot 10^{-6} \cdot 20^{3} \cdot \mathrm{~cm}^{5} \cdot X \cdot A}{4,0 \cdot 10^{-4} \cdot \frac{1}{A} \cdot 3,0^{2} \cdot \frac{1}{A} \cdot 2,5^{2} \cdot \mathrm{~cm}^{2} \cdot \mathrm{~cm}^{2} \cdot \not X K} \\
& B=\frac{0,12 \cdot 30 \cdot 10^{-6} \cdot 8 \cdot 10^{3}}{10^{-4} \cdot 5^{2} \cdot 2^{-2}} \\
& B=\frac{12 \cdot 3 \cdot 8 \cdot 4}{5^{2}} \\
& B=\frac{3 \cdot 2^{2} \cdot 3 \cdot 2^{3} \cdot 2^{2}}{5^{2}} \cdot \frac{2^{2}}{2^{2}} \\
& B=\frac{2^{9} \cdot 9}{100}=5,12 \cdot 9=46,08 \frac{1}{\mathrm{~cm}}
\end{aligned}
$$

Fassen Sie auf einen gemeinsamen Nenner zusammen, beseitigen Sie ggf. Mehrfachbrüche und machen Sie ggf. den Nenner rational

0.1.3.T
 a)

$$
\begin{aligned}
R_{P} & =\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} \\
\frac{1}{R_{P}} \cdot \frac{R_{1} R_{2}}{R_{1} R_{2}} & =\frac{1}{R_{1}} \cdot \frac{R_{p} R_{2}}{R_{p} R_{2}}+\frac{1}{R_{2}} \cdot \frac{R_{p} R_{2}}{R_{p} R_{2}} \\
\frac{R_{1} R_{2}}{R_{p} R_{1} R_{2}} & \left.=\frac{R_{p} R_{2}}{R_{P} R_{1} R_{2}}+\frac{R_{P} R_{1}}{R_{P} R_{1} R_{2}} \right\rvert\, \cdot R_{P} R_{1} R_{2} \\
R_{1} R_{2} & =R_{P} R_{2}+R_{p} R_{1}
\end{aligned}
$$

umstellen nach R_{1} :

$$
\begin{aligned}
R_{1} R_{2}-R_{P} R_{1} & =R_{P} R_{2} \\
R_{1}\left(R_{2}-R_{P}\right) & =R_{P} R_{2} \\
R_{1} & =\frac{R_{P} \cdot R_{2}}{R_{2}-R_{P}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& R_{P}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} \\
& \frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& \frac{1}{R_{1}}=\frac{1}{R_{P}}-\frac{1}{R_{2}}-\frac{1}{R_{3}}=\frac{R_{2} R_{3}-R_{P} R_{3}-R_{P} R_{2}}{R_{P} R_{2} R_{3}} \\
& R_{1}=\frac{R_{P} R_{2} R_{3}}{R_{2} R_{3}-R_{P} R_{3}-R_{P} R_{2}}
\end{aligned}
$$

0.1.4.T a)

$$
\frac{1}{x y}+\frac{1}{x z}+\frac{1}{y z}=\frac{z}{x y z}+\frac{y}{x y z}+\frac{x}{x y z}=(x+y+z) \cdot \frac{1}{x y z}
$$

b)

$$
\begin{aligned}
& \left(\frac{u}{v}-\frac{v}{u}\right) \cdot\left(\frac{u}{v}+\frac{v}{u}\right)=\left(\frac{u^{2}-v^{2}}{u v}\right) \cdot\left(\frac{u^{2}+v^{2}}{u v}\right) \\
& =\frac{1}{(u v)^{2}} \cdot\left(u^{2}-v^{2}\right) \cdot\left(u^{2}+v^{2}\right)=\frac{1}{(u v)^{2}} \cdot\left(u^{4}-v^{4}\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
& \frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{(x+y)^{2}+(x-y)^{2}}{(x-y) \cdot(x+y)} \\
& =\frac{x^{2}+2 x y+y^{2}+x^{2}-2 x y+y^{2}}{x^{2}-y^{2}} \\
& =\frac{2 x^{2}+2 y^{2}}{x^{2}-y^{2}}
\end{aligned}
$$

d)

$$
\frac{\frac{x^{2}}{y}+\frac{y^{2}}{x}}{\frac{1}{x}+\frac{1}{y}}=\frac{\frac{x^{3}+y^{3}}{x y y}}{\frac{x+y}{x y y}}=\frac{x^{3}+y^{3}}{x+y}
$$

e)

$$
\begin{aligned}
& \frac{\sqrt{27}}{\sqrt{6}-\sqrt{3}}=\frac{\sqrt{3 \cdot 9}}{\sqrt{2 \cdot 3}-\sqrt{3}}=\frac{\sqrt{3} \cdot \sqrt{9}}{\sqrt{3} \cdot(\sqrt{2}-1)} \\
& =\frac{3}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{3 \cdot \sqrt{2}+3}{2-1}=3 \cdot \sqrt{2}+3
\end{aligned}
$$

